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INTRODUCTION

Ankylosing spondylitis (AS), a long term
inflammation arthritis attacking sacroiliac joints
as well as spine (Taurog et al.  2016). Back pain is
a characteristic symptom of AS (Arthritis and
Diseases    2013). Worriedly, AS can induce struc-
tural and functional impairments and reduce pa-
tients’ quality of life (Braun and Sieper  2007).
Though the cause of AS is unclear, it is believed
that there is a close link between genetic factors
and AS. For example, 30 years ago, the strong
association between HLA-B27 and susceptibili-
ty to AS has been demonstrated, however, HLA-
B27 accounts for about 5 percent of the genetic
risk of AS (Reveille  2006). Non-HLA-B27 genet-
ic factors might also exert important functions in
the progression of AS. Recently, genome-wide
association studies extracted several non-HLA
genes, for example, IL23R, ARTS1 and ERAP1 in

AS (Brionez and Reveille  2008; Brown  2009).
Nevertheless, the current understanding of the
pathogenesis of this disease remains still poor.
Thus, there is an urgent need to explore the
molecular mechanisms of AS.

DNA microarray is a powerful technology
for monitoring the expression level of thou-
sands of genes simultaneously, which provides
the foundation for widespread applications
such as disease classification, pathway model-
ing, as well as functional genomics. One of the
common challenges of high-throughput tech-
nologies across-omics fields is that they gener-
ate a larger pool of candidates, yet only very
few of these genes are of high relevance to the
disease. Thus, gene prioritization is necessary
aiming to explore the most promising genes
among long lists of genes through integrative
computational analysis of public genomic data
(Moreau and Tranchevent  2012). Fortunately,
several computational methods have been cre-
ated to prioritize highly relevant candidate genes
(Moreau and Tranchevent  2012). Furthermore,
integrating gene-level data from multiple evi-
dence layers has been demonstrated to be ef-
fective in extracting and prioritizing candidate
genes of complex genetic traits (M et al.  2012).
However, most of the existing meta-analysis
methods have been exclusively developed to
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integrate microarray expression data, but do not
serve the purpose of integrating gene-level data
from multiple study-types. Thus, in the current
study, the researchers implemented three meth-
ods including combining p-values (CP), conver-
gent evidence (CE), and rank product (RP) meth-
od, to integrate gene-level data generated from
multiple lines of evidences to  identify the suit-
able genes for AS. In the section of Material and
Methods, details and citations of these three
methods are provided.

Objectives

In the current study, the researchers attempt-
ed to screen out the suitable genes which con-
tributed to AS based on three popular meta-anal-
ysis approaches (CE, CP, RP). AS-related microar-
ray expression profile was firstly derived from
Gene Expression Omnibus (GEO) database.
Then, candidate genes across multiple methods
were respectively identified based on significance
statistic or genes rank. Next, the common genes
between any two methods were extracted and
named as the optimal genes, following by func-
tional enrichment analysis for the optimal genes.
Afterwards, context likelihood of relatedness
(CLR) algorithm was utilized to establish the
mutual information network (MIN) based on the
optimal genes. Simultaneously, hub genes were
extracted from the MIN. Support vector ma-
chines (SVM) was utilized to measure the classi-
fication ability of hub genes. Results from the
present study will provide the groundwork for
the understanding of AS pathogenesis.

METHODOLOGY

Affymetrix Chip Data

AS-related microarray data (accession NO.
GSE25101) were obtained from the  GEO data-
base (http://www.ncbi.nlm.nih.gov/geo/) at Na-
tional Center of Biotechnology Information
(NCBI) (Barrett et al. 2007). The platform was
GPL6947 (Illumina Human HT-12 whole-genome
expression BeadChips). In GSE25101, 32 chips
were available for subsequent analysis, includ-
ing 16 active AS patients and 16 gender-and age-
matched controls. The raw data and probe an-
notation files were downloaded for following
analysis.

Preliminary Preprocessing

Before analysis, the raw expression data were
carried on preprocessing. In this study, with an
attempt to eliminate the effect of nonspecific
hybridization, Affy package was used (Gautier
et al.  2004). Next, background correction was
done using robust multi-array average (RMA)
method (Irizarry et al.  2003), and then normaliza-
tion was implemented to obtain unbiased data
(Bolstad et al. 2003). Subsequently, perfect match
and mismatch correction was conducted based
on Micro Array Suite 5.0 (MAS 5.0) algorithm
(Hubbell et al. 2002). Probe sets matching either
none were filtered, and if there were several
probes matching to one gene, the mean value
was utilized to represent the expression level of
this gene. After probes were aligned to gene
symbols, overall 11,587 genes were remained
after preprocessing.

Analytical Techniques

In recent years, integrated analysis was uti-
lized to combine information of multiple differ-
ent analysis methods to extract significant can-
didate genes associated with diseases. In this
study, three popular analysis methods, includ-
ing CP, CE, and RP, were utilized in the evalua-
tion and comparison. Below, these 3 methods
that were selected for comparison were briefly
described.

CP Method

CP is one of the traditional methods of meta-
analysis. To combine p-values of a gene from
multiple evidence layers, the p-values should
have been estimated from the same null hypoth-
esis. Popular approaches to combine p-values
cover Fisher’s and Stouffer’s methods. In this
study, the Fisher‘s exact test was used to extract
the significant genes between AS and control
groups. The raw P-values were corrected based
on false discovery rate (FDR) using Benjamini
and Hochberg method (Benjamini et al. 2001).
Then, genes were ranked in ascending order
according to the FDR values, and a FDR-value <
0.05 was chosen as the cutoff criteria.

CE Method

CE method is a modified form of PageRank
algorithm (Page 1998). Previously, this variant
of PageRank algorithm has been used to sort
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genes in microarray-based gene expression ex-
periments (Morrison et al. 2005). A conceptually
similar gene-level integration has been success-
fully adopted to prioritize candidate genes in sy-
chiatric diseases (M et al.  2012). Herein, the re-
searchers used this modified PageRank algorithm
to calculate the CE scores to further identify the
optimal genes using the following formula:

CE(G)=CE(L1)/n (L1)+....CE(Ln)/n(Ln)
Where, CE (Li) denoted the expression val-

ues of evidence layer-i and n(Li) stood for the
number of genes in evidence layer-i.

CE approach does not incorporate signifi-
cance statistic but ranking genes. Based on the
CE scores, genes were ranked in descending
order, and the top 100 genes with higher CE
scores were identified.

RP Method

RP is a non-parametric analysis method de-
veloped by Breitling et al. (Breitling et al.
2004), which is used to provide reliable signifi-
cance thresholds to identify significant genes.
In detail, for each gene g in k replicates i, each
examining ni genes, researchers can calculate
the corresponding combined probability as a RP.
In the current study, the genes were compared
and sorted using RP method. Next, the ranks
were aggregated to an overall value for all repli-
cations, and then a ranked gene list was ob-
tained. Of note, genes with the smallest RP val-
ues were the most significant candidate genes
and the biologist can then select some of them
for further study. Thus, in this study, genes were
sorted in ascending order based on RP scores,
and the top 100 genes were identified.

The RP value was calculated based on the
following equation:

In this formula, rg,i the position of gene g in
the list of genes in the ith replicate sorted by fold
change.

Prioritization of Candidate Genes

With the goal of better understanding the
differences of genes in any two methods, gene
compositions identified by each method were
analyzed and compared using R/Bioconductor
package GenRank. Specifically, to avoid the po-

tential bias due to duplicated genes, duplicated
genes were calculated only once (as a single
vote) in each evidence layer in all the three meth-
ods. When reserving duplicated genes, those
genes with significant test statistic (for example,
smaller p-values or higher effect-size) were re-
tained. Then, the common genes between any
two methods were extracted and named as the
optimal genes.

Functional Enrichment Analysis

Cytoscape, as an open-source software, is
used to display molecular interaction networks
and combining those interactions with microar-
ray profiles or genomics data (Shannon et al.
2003). Biological networks gene ontology (BiN-
GO) is a plugin of Cytoscape for assessing the
overrepresentation of gene ontology (GO) terms
in a graph of a biological network, or any other
set of genes (Maere et al. 2005). In the current
study, to further investigate the functional en-
richment of the optimal genes with high classifi-
cation accuracy, GO biological process (BP) terms
enrichment analysis was performed using BiN-
GO. A FDR-value < 0.01 was set as threshold.

Identification of Hub Genes via CLR Algorithm

As reported, MIN is a subclass of network
inference approach, whose theoretical founda-
tion is to infer a connection among a few of nodes
when it possesses a high value on the basis of
mutual information (Meyer et al. 2007). CLR al-
gorithm (Faith et al.   2007), as an extension of
the relevance network approach, is utilized to
count the mutual information for each pair of
nodes and derive a score related to the empirical
distribution of mutual information values. In the
present work, the optimal genes were used as
vertices, and microarray profiles were taken as
the mutual information between vertices. Next,
CLR was used to calculate the edge score for
each pair of genes using an inference approach
which took the square weighted value as input.
Then, the adjacency matrix was established, fol-
lowing by the MIN construction by means of
Igraph package.

Subsequently, to further uncover the signif-
icance of nodes in the MIN, degree analysis for
the MIN was conducted. Degree is the total
number of interactions of a given node connect-
ed with its neighboring nodes (Haythornthwaite

RP (g) =     rg,i)Σ
k

i=1(
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1996). Commonly, the nodes with more interac-
tions were determined as hub genes. In this work,
the genes with degree > 60 were extracted, and
regarded as hub genes.

Analysis of Classification Capability
Using SVM

To evaluate the classification performance
of the hub genes between AS and control sam-
ples, SVM was employed in this study (Chang
and Lin 2007). In detail, to measure the classifi-
cation ability of hub genes, several terms of ac-
curacy, sensitivity, as well as specificity were
employed (Mohammadi et al.  2011). During the
classification, all samples were divided into two
parts (training and testing groups) using 5-fold
cross-validation (5-CV) method. Specifically,
samples were separated according to the ratio
of 6 to 4, and the 19 samples were used as a
training set, the remaining 13 samples as a test-
ing group to verify the classification models.

RESULTS

Identification of the Optimal Genes

To prioritize the candidate genes of compli-
cated genetic traits, three different methods (CP,
CE, and RP) were used.  The numbers of identi-
fied candidate genes from different methods
under the thresholds of FDR values or effect-
size was generated. Using the CP method, a to-
tal of  326 candidate genes were identified based
on the FDR < 0.05. In the CE and RP methods,
only the top 100 genes were selected for further
analysis. The top 20 candidate genes detected
by each method were listed in Table 1. Signifi-
cantly, there was one common gene (MYL6) in
CP and RP method, and there  was also one com-
mon gene (AAMDC) in CP and CE methods.
However, no overlap was observed in CE and
RP methods. Then, R/Bioconductor package
GenRank provided in turn was used to read the
data sets and then the common genes across
three different methods were extracted, and du-
plicated genes were filtered out. The correspond-
ing number of genes identified by each method
was shown in the Venn diagram of Figure 1.
Among the 429 genes, 7 genes were common
between CP and CE methods, 90 genes were the
intersection of CE and RP, and 4 genes were
common of CP and RP. Significantly, there were

4 genes (S100A4, MYL6, ATP5EP2, and S100A8)
identified by CE, CP and RP simultaneously. Fi-
nally, 93 optimal genes were reserved for further
analysis.

Functional Enrichment Analysis for the
Optimal Genes

Then, the functions overrepresented by the
93 optimal genes were extracted using BiNGO, a

Table 1: The top 20 candidate genes identified by
each method

CP CE RP

PTPN1 AAAS OAZ1
LAMTOR2 AACS HBA2
IL27RA AAED1 RN7SL1
XPC AAK1 HBB
FAM222B AAMDC ITIH5
WBP5 AAMP LCP1
AAMDC AAR2 ORC6
MRI1 AARS HBG2
HOXB1 AARS2 IFITM2
DGKQ AASDH HBG1
TXN AASDHPPT ARHGDIB
CDK13 AATBC TYROBP
S100A4 AATF SLC25A39
LSM10 AATK FTL
TNNC2 ABAT HLA-B
CASP2 ABCA1 MKRN1
MYCBP2 ABCA13 UBB
GMFG ABCA2 MYL6
BBS1 ABCA7 S100A9
MYL6 ABCB1 ACTB

Note: CP,  combining p-values; CE, convergent evi-
dence; RP,  rank product

Fig. 1. Venn diagrams showing the overlap between
lists of genes generated by any two analysis of CE,
CP, and RP.  Only intersecting genes with similar
expression pattern were considered. Abbreviations:
CP,  combining p-values;   CE, convergent Evidence;
RP,  rank product
Source: Author
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Cytoscape plugin. A GO tree representing a hier-
archical structure of GO-BPs was shown in Fig-
ure 2, where yellow nodes in the GO tree demon-
strated significantly overrepresented GO-BPs
(FDR < 0.01). The overrepresented BPs included
13 terms. Among these terms, the top 5 functions
were translational elongation (FDR = 5.71E-10),
translation (FDR=2.83E-06), immune system pro-
cess (FDR =1.11E-03), gas transport (FDR = 1.27E-

03), and actin filament-based process (FDR =
2.05E-03).

Identification of Hub Genes

Before hub genes identification, a MIN was
firstly constructed for the optimal genes using
CLA algorithm. The property of the MIN cover-
ing 93 genes and 2212 interactions was de-

Fig. 2. Functional enrichment analysis for the optimal genes, as visualized using Cytoscape. Node colors
(yellow) represented the statistical significance of functional enrichment of the corresponding gene oncology
(GO) biological processes (BPs).  White nodes (FDR > 0.01) were not significantly overrepresented, they were
added to demonstrate the relationships among the significant BPs and non-significant BPs. The area of a
node was proportional to the number of genes annotated to the corresponding GO term
Source: Author
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scribed in Figure 3. The degree distribution of
every gene in the MIN was different. Based on
the degree > 60, a total of 3 hub genes were
identified, including TALDO1 (degree = 66),
LCP1 (degree = 64), and RPS27A (degree = 61).

Classification Ability of Hub Genes

SVM was used in this study to assess the
classification performance of the 3 hub genes
between AS and control patients. This method
separated AS from control samples with the high

accuracy of 0.962, specificity of 0.937, and sen-
sitivity of 0.953.

Accordingly, these 3 genes can classify un-
known samples from AS patients with high
accuracy.

DISCUSSION

AS is a common inflammatory rheumatic dis-
ease that affects the predominantly axial skele-
ton and causes characteristic inflammatory back
pain, which can decrease the quality of life (Du-

Fig. 3. Construction of mutual information network (MIN) using context likelihood of relatedness (CLR)
algorithm. In the MIN, there were 93 genes and 2212 interactions. Yellow nodes denoted the hub genes,
blue nodes stood for other optimal genes, and edges represented the interaction between any two nodes
Source: Author
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ran et al. 2016; Osman and Maksymowych
2016). In the present research, the aim was to
explore the potential molecular mechanism of AS
by means of three meta-analyses approaches.
This study demonstrates that several promising
genes including LCP1 and RPS27A might pro-
vide important clues to the development pro-
cess of RA.

Hub genes are believed to play major roles
in a highly interacted network. In this study, sev-
eral highly connected hub genes in the MIN
were defined. In the current study, LCP1 was
identified as a hub. As we all know, the alias of
LCP1 is L-plastin and significantly, L-plastin is
 a member of the fimbrin family of actin-binding
proteins. Moreover, the actin-cytoskeleton play
important roles in the regulation of integrin func-
tion and leukocyte integrin avidity is crucial for
inflammation and immunity (López-Posadas et
al. 2017). Significantly, inflammatory stimuli can
activate polymorphonuclear neutrophils (PMN)
rapidly. Remarkably, improper release of oxygen
free radicals from the activated PMNs, in syn-
ovial fluid of patients with rheumatoid arthritis,
contribute to the damage of joint and other tis-
sues (Zamudio-Cuevas et al. 2015). Moreover,
AS, like rheumatoid arthritis, is one of the in-
flammatory arthritic diseases, has been ad-
dressed that free radicals might be the causative
factors in the AS onset (Ho et al. 2000). Through
the literatures, LCP1 involvement in AS is not
well defined, and studies have rarely been re-
ported previously. However, based on these re-
sults, the researchers infer that LCP might have
crucial roles in the onset and progression of AS,
partially through regulating the release of free
radicals.

In the present study, RPS27 was another hub
gene. RPS27A is one of ribosomal proteins (RPs)
which are emerging as novel regulators of cell
growth linking aberrant ribosome biogenesis to
cell cycle arrest (Han et al. 2017). RPs have been
suggested to regulate p53 activity (Cokariæ et
al.  2015; Russo and Russo  2017). Growing evi-
dence reveals that p53 is involved in many cel-
lular activities including immune response (Li et
al.  2017; Tsuda et al.  2017). Significantly, inflam-
matory is closely associated with AS which caus-
es characteristic inflammatory back pain.
Through consulting literature materials, there
were no studies about RPS27A roles in AS de-
velopment and progression previously. Dem-
onstrated herein, the result indicates that the

abnormal expression of RPS27A might cause dis-
ordered immune response, triggering the occur-
rence and development of AS.

Functional analysis demonstrated that trans-
lational elongation and translation were the most
two significant GO terms. Translation, including
three distinguished stages of translation (initia-
tion, elongation as well as termination), is a part
of the whole process of gene expression. In this
process of translation, mRNA is decoded to gen-
erate a polypeptide on the basis of genetic code.
Of note, translational elongation factor 2 has
been revealed to control TNF-a translation (Gon-
zlez-Tern et al. 2013). A previous study has re-
ported that TNF-α can cause systemic and local
inflammation resulting in the clinical signs and
symptoms of AS (Szalay et al. 2012). The results
prove that translation might regulate AS through
the inflammatory response.

CONCLUSION

Taken together, 3 hub genes and 13 signifi-
cant functional terms were identified by inte-
grating three different methods. LCP1 and
RPS27A might be used as genetic biomarkers
for AS diagnosis and treatment in the future.
However, several limitations must be noted.
Sample size was relatively small. Moreover, the
identified genes were predicted using the bioin-
formatics approaches, yet detailed analyses of
their expression were not implemented by exper-
iments. These results warrant further study, and
should generate hypotheses for patient or pop-
ulation-based studies.

RECOMMENDATIONS

Results from the current study will provide
the groundwork for the understanding of AS
pathogenesis.
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